**Department of Electrical Engineering and Computer Science** 

# Next Generation I/O Panel (Are we Addressing the Right Problem? Think Purpose!)

**Alok Choudhary** 

HEC FSIO 2011

**Department of Electrical Engineering and Computer Science** 

# LET'S LOOK AT THE USERS-WHAT DOES A USER WANT/NEED?







**Department of Electrical Engineering and Computer Science** 

# How Do I Represent and Manage My Data? Not How File System Works and How do I manage millions of files



**Department of Electrical Engineering and Computer Science** 

# How Do I discover Knowledge from Complex Data Sets? Not How do I Optimize Reading Millions of Files and from millions of processors?









**Department of Electrical Engineering and Computer Science** 

# How Do I perform queries in a manner which relates to my application? Variables



**Department of Electrical Engineering and Computer Science** 

# **What Does a User Get?**



### Department of Electrical Engineering and Computer Science





**Department of Electrical Engineering and Computer Science** 

Decouple "What" from "How"





• Is there a way to specify high-level information?

- Proactive
- Performance
- Portability

**Department of Electrical Engineering and Computer Science** 

# I/O Software Stack for Scientific Computing



**Department of Electrical Engineering and Computer Science** 

# **High Level I/O Library**

- Storage data models developed in the 1990s;
   Network Common Data Format (netCDF) and Hierarchical Data Format (HDF)
- Multidimensional array based data models
- A portable, self-describing on-disk file format
- HDF5
  - Supports regular grid based data models

**Department of Electrical Engineering and Computer Science** 

## Parallel netCDF

- A parallel I/O library based on original netCDF
- Data Model:
  - Collection of variables in single file
  - Typed, multidimensional array variables
  - Attributes on file and variables
- Features:
  - Portable data format
  - Noncontiguous I/O in memory using MPI datatypes
  - Noncontiguous I/O in file using sub-arrays
  - Collective I/O

**Department of Electrical Engineering and Computer Science** 

# **Example: Lower Triangular Matrix**



netCDF: fixed dimensions



HDF5: Potential for odd interactions between application data layout and chunk allocation



Lower-triangular aware storage model and layout

**Department of Electrical Engineering and Computer Science** 

## **Some Observations**

- I/O library interfaces still based on low-level vectors of variables
- Lack of support for sophisticated data models, e.g. AMR, unstructured Grids, Geodesic grid, etc
- Gap between application data model and I/O library data model
- Require too much work at application level to achieve close to peak I/O performance

**Department of Electrical Engineering and Computer Science** 

## **DAMSEL Goals**

- Provide higher-level data model API to describe more sophisticated data models
- Enable exascale computational science applications to interact conveniently and efficiently with storage through the data model API
- Develop a data model storage library to support these data models, provide efficient storage data layouts

#### **Department of Electrical Engineering and Computer Science**

### **DAMSEL – A Data Model Storage Library**

- A set of data models I/O APIs relevant to computational science applications
- A data layout component that maps these data models onto storage efficiently
- A rich metadata representation and management layer to handle both internal metadata and that generated by users and external tools
- I/O optimizations: adaptive collective I/O, request aggregation, and virtual filing

| Application            |  | Data Model I/O API                     |
|------------------------|--|----------------------------------------|
| High Level I/O Library |  | Data Layout and<br>Metadata Management |
| I/O Middleware         |  | Aggregation Optimization               |
| Parallel Filesystem    |  | Storage Access                         |
| I/O Hardware           |  |                                        |

**Department of Electrical Engineering and Computer Science** 

## **DAMSEL for FLASH**

- Goal: to describe hierarchical/structural and solution information through API
- Entity
  - FLASH cell as rectangle entity in DAMSEL
  - FLASH Block as Cartesian Mesh entity in DAMSEL
- Entity Sets
  - FLASH blocks assigned to entity sets to define hierarchical/ structural information
- Tags
  - Only for solution data



#### **Department of Electrical Engineering and Computer Science**

#### **Next Generation I/O - Three Ideas:**

- 1) High-Level User Centric View, Purpose Driven
- 2) Online/In-situ Transformations, analytics
  - 3) Active Storage, Analytics, Reorganization



Accelerate Knowledge Discovery

**Department of Electrical Engineering and Computer Science** 

# **Summary**

- Think Processor Evolution when thinking I/O
  - Desktop, laptop, Mainframe, embedded, mobile, graphics, games, etc etc... Designed to solve a problem
- Think application and user model and needs and not how to make things work with file system
- Working in user's language will accelerate knowledge discovery – and they will come
- Ultimately, the purpose of I/O should drive architecture at all levels